[^0]
Highlights

- Recreational fisheries for annual species are not often evaluated quantitatively
- Harvest regulations that are matched to life history can improve expected outcomes
- A later harvest season or a "rolling" bag limit would benefit this scallop fishery
- Rolling bag limits mirror escapement policies like those in commercial fisheries

Abstract

The life history schedule of short-lived species compresses the temporal window available for harvest and exacerbates harvest timing decisions. For annual species whose populations are made up of a single year class, it is challenging yet essential to limit harvest to a level that will allow sufficient spawning escapement to sustain the population. Unexpectedly, intense harvest prior to reproduction could extirpate a population in a single season. Larger-scale commercial fisheries for annual or semelparous species are often managed using sophisticated pre-season abundance forecasts or in-season depletion estimates combined with intensive monitoring of catches and enforcement of catch limits. However, sufficient monitoring and harvest control are rarely feasible in recreational fisheries. We demonstrate the use of an age-structured simulation model to identify robust management regulations for recreational harvest season and bag limits applied to the Florida bay scallop fishery. We compared the outcomes of current harvest regulations with a suite of alternative harvest regulations in a recreational fishery for Florida bay scallops. To account for uncertainty in the stock status and dynamics of the fishery, we evaluated alternative harvest options across three levels of initial stock exploitation and two scenarios for future fishing effort. Our results show that biologically-informed regulations, which allowed for more bay scallops to spawn prior to harvest, such as a later harvest season and daily harvest limit increasing over the season, performed well across all treatments, and outperformed many of the current regulations when the initial stock state was more exploited, as well as when future effort doubled. These results suggest that (1) harvest regulations that more closely match the biology and life history are likely to perform better for short-lived, annual taxa than simpler regulations that may not explicitly consider these factors, and (2) simpler regulations can perform well, but

require precise, annual monitoring to prevent potentially catastrophic overharvest or costly underutilization.

Keywords: Argopecten irradians concentricus, recreational fisheries, harvest season, bag limits, population simulation

1. Introduction

Fisheries for short-lived or annual species pose challenges for harvest management. Annual species have a simpler (single mode) size structure and truncated age structure compared to most managed fish species. This compression of age and size structure as a function of comprising but a single year class means that these species are highly sensitive to effects of human exploitation. Larger-scale commercial fisheries for such species are often managed using sophisticated pre-season abundance forecasts or in-season depletion estimates (e.g., Rosenberg et al., 1990; Arkhipkin et al., 2015) combined with intensive monitoring of catches and enforcement of catch limits to ensure sufficient spawning escapement. Although recreational fisheries for short-lived species are common and socioeconomically important (Lellis-Dibble et al., 2008; Taylor, 2017; Aguilera, 2018; Ben-Hasan, 2018; Sydeman et al., 2020), these fisheries are more difficult to monitor, assess, and manage than major commercial fisheries. The large, unrestricted pool of potential recreational fishers entering from numerous access points along with limited traditional means of restricting catch (such as using season, length, or bag limits) constrain the available means to manage recreational fisheries for short-lived or annual species.

Precision is necessary for the amount and timing of harvest for short-lived species with essentially a single age or size class, e.g., small-bodied fish, some crabs, many shrimp, and many cephalopods (Robert et al., 2010; Arkhipkin et al., 2015; Sauer et al., 2021; Žák et al., 2021). Most traditional fisheries models were developed for longer-lived fish and invertebrate species because these models assume the existence of multiple year classes and population dynamics associated with iteroparity (Arkhipkin et al., 2021). Compression of age and size structure in annual species entails a meaningful proportion of the population need to spawn each year to ensure sustainable harvest as population replenishment and viability is highly dependent on
spawning success of a sole cohort (and not buffered by any carry-over of spawning stock year to year; Rosenberg et al., 1990). However, harvesting also needs to occur before rapid post-spawn senescence, which renders the organism unpalatable or undesirable to catch (notably occurs in some semelparous species such as pacific salmon and octopus). Additionally, delaying harvest until after their peak spawning period will likely decrease overall socioeconomic utility as most of the stock would succumb to natural mortality without being harvested. Conversely, high fishing mortality rates before most of the spawning has occurred, in addition to the potential for a critical reduction in spawning potential, could result in growth overfishing that would undercut harvestable biomass.

Common harvest regulations in recreational fisheries include season length and bag limits. Effects of season timing and length may interact with bag limits (Melnychuk et al., 2021); liberal bag limits may especially function to "shorten" the season by quickly removing the available stock, whereas very conservative bag limits may constrain harvest-based utility. However, there are very few studies quantitatively evaluating the biological sustainability and harvest utility tradeoffs resulting from the more unique aspects of these annual species lifehistories.

Most research on fisheries for such species has focused on commercial take (Rosenberg et al., 1990; Hoshino et al., 2012; Ben-Hasan et al., 2018), with fewer studies evaluating recreational fisheries (Reid and Montgomery, 2005), and very few evaluating the harvest season and bag limit regulations that are important to sustaining the socioecological system of these fisheries (Forbes et al., 2019). Among the reasons for this is the large number of active and potential participants in recreational fisheries given essentially unrestricted access (fishing licenses are required but are cheap and their number is not limited) and the dispersed nature of
access points which make monitoring difficult and unprecise while also limiting the ability of mangers to effectively constrain harvest. Typically, such fisheries are harvest-oriented and cease outside of the harvest season (e.g., Taylor et al., 2017; Ben-Hasan et al., 2018; Arkhipkin et al., 2022), but while participating, fishers attain utility from both catch-related and non-catch-related attributes of the fishing experience. Popular recreational fisheries of these species also support economically important visitation and tourism activities, and thus are vital to local communities. The extent to which local economies depend on these fisheries emphasizes the importance of setting appropriate season and bag limits. Shorter seasons will limit annual market activity, but a single year of overly intense harvest from lenient season lengths and bag limits could collapse the entire fishery. Successful local governance requires evaluations of social and ecological dynamics to set reasonable and sustainable regulations.

Here we consider a case study of a recreational fishery for a short-lived species that has high socioeconomic value locally: the bay scallop (Argopecten irradians concentricus) fisheries of the Gulf coast of Florida, USA. Many different types of regulations have been adopted across counties, but little management evaluation exists to determine which of these regulations optimize ecological and socioeconomic sustainability. The goals of this work are to evaluate current and alternative management strategies for managing this species and provide applicable management advice to a local fishery. We address these goals by building upon the initial empirical work done by Granneman et al. (2021), developing a simulation model representing a local Florida bay scallop fishery, and discussing the implications our results have for trade-offs between current harvest regulations, like bag and season limits, and similar regulations tweaked to be more biologically-informed by considering the life history schedule.

1.1 Case Study

Bay scallops are distributed from Massachusetts to Northern Mexico throughout the Gulf and Atlantic coasts in the US, where they support commercial and recreational fisheries (Mackenzie, 2008; Bert, 2011). The Florida bay scallop (Argopecten irradians concentricus) is a subspecies currently found from St. Andrew Bay to Pine Island Sound along the Florida Gulf coast (Geiger et. al., 2006). Florida bay scallops rarely live longer than 12-18 months (Barber and Blake, 1983; Arnold et al., 2005) and spawn in late summer or early fall (Geiger et al., 2010), however there is evidence of some protracted spawning throughout the year (Sastry, 1963; Geiger et al., 2010). This makes Florida bay scallops effectively an annual species and the prevailing theory across the entire species range is that they reproduce usually only once, what has been characterized as "interrupted iteroparity" since individuals may undergo multiple spawning events however usually do not survive long enough for the second and senescence does not appear to be directly related to spawning (Bricelj and Krause, 1992; Estabrooks, 2007; Abele et al., 2009).

The fishery for bay scallops on the Gulf coast of Florida is exclusively recreational and hand-harvest, with fishers swimming (usually snorkeling) over shallow sea grass flats and locating scallops by sight. The species' occurrence in nearshore, shallow waters and the simple harvest techniques has made the fishery especially popular with people who otherwise might not engage in recreational fishing (Granneman et al., 2021). These traits also make the fishery a social affair, with large, ad-hoc aggregations of scallop harvester vessels forming on the water, and little indication of negative utility associated with crowding (as is common in other recreational fisheries; Hunt et al., 2019). The popularity of this fishery attracts thousands of visitors for day or overnight trips to coastal communities that rely on the additional revenue and market activity (Hall-Scharf et al., 2018). Because the fishery is harvest oriented, essentially no
scalloping trips (and associated market activity) occur outside of harvest season. The fishery is currently managed by bag limits (per individual and vessel per day) and by harvest seasons, but the length and timing of the harvest season and bag limits are regulated differently in each of the spatial management zones (Figure 1). While all harvest seasons occur generally during the summer (and thus largely before or overlapping with scallop spawning), changes to the length of the harvest seasons are perceived to have important implications for local economies (HallScharf et al., 2018). Despite this, quantitative assessments of harvest season efficacy and effect on scallop population and socioeconomics are largely unexplored (Geiger et al., 2006; Granneman et al., 2021).

2. Methods

2.1 Approach

We used a simulation approach to evaluate the effects of harvest regulations on bay scallop population dynamics as well as metrics considered important to the socioeconomic utility of scallopers. We developed an age structured simulation model for a hypothetical population of bay scallops and subjected this population to alternative harvest regulations.

2.2 Population model

All analyses were conducted in R (R Core Team, 2022), and all data and code needed to replicate our study are available from github.com/lidach/CampLabScallop. We built a single area, single sex, age structured population model that simulates the monthly dynamics of a hypothetical bay scallop fishery under different management actions. Where possible, we parameterized the model using the most recent information from the literature (Table 1). We chose a single sex model given bay scallops are functional hermaphrodites (Barber and Blake,
1985). We modeled bay scallop ages from 1 to 18 months, as 18 months is generally thought to be the maximum age achieved in Florida (Barber and Blake, 1983). The model is initialized at an unfished equilibrium age structure using:

$$
\text { (1) } N_{a, t=1}= \begin{cases}R_{0} & \text { if } a=1 \\ N_{a-1, t=1} e^{-M_{a-1}} & \text { if } a>1\end{cases}
$$

where R_{0} denotes unfished recruitment, M_{a} references the monthly instantaneous natural mortality at age a, and t denotes the time step in months ($t=1$ references the beginning of model). Natural mortality was calculated using the length-inverse Lorenzen M, which assumes that natural mortality declines with age until the maximum age of $a=18$ months (T2.3;

Lorenzen, 2000, 2022). Upon reaching that maximum age, scallops are subject to infinite M, i.e., no scallops survive beyond $a=18$ months. Shell height, measured from the hinge to the shell margin, was calculated using the von Bertalanffy growth function (T2.1, Figure 2). We modeled the weight at age of a scallop as a power function of shell height (T2.2), and the maturity-at-age as a logistic function of age (T2.4).

The monthly scallop population simulates forward in time according to:

$$
\text { (2) } N_{a, t}= \begin{cases}R_{t} & \text { if } a=1 \text { and } t=\text { every } 12 \text { months } \\ N_{a-1, t-1} e^{-\left(M_{a-1}+F_{a-1, t-1}\right)} & \text { if } a>1\end{cases}
$$

where $F_{a, t}$ represents the fishing mortality in a given month for a given age and R_{t} denotes recruitment. Given the monthly time-step, spawning only takes place in select months corresponding to the start of the year (every twelfth time step). Recruitment in each year (y) was calculated deterministically using the Beverton and Holt function (Beverton and Holt, 1957):
(3) $R_{t}=\frac{\alpha S_{y-1}}{1+\beta S_{y-1}}$ if $t=$ every 12 months
where $S_{y-1}=\sum_{t i n y-1} \sum_{a} N_{a, t} * \operatorname{Mat}_{a} * \psi_{\operatorname{month}(t)} * \omega_{a} * F e c_{a}$
The accumulated spawning biomass for the year prior to recruitment, S_{y-1}, attempts to account for the individuals that may have spawned prior to the $12^{\text {th }}$ month in each year (December). This quantity was calculated by summing the monthly spawning biomass produced by scallops within a year (where the $\sum_{t \text { in } y-1}$ summation symbol denotes summation over a year). The vector ψ denotes the probability of spawning in each month $\left(\psi_{\text {month }(t)}\right.$, where month (t) references the particular month depicted at time t), which accounts for the seasonality of spawning. This vector was parameterized using relative values obtained from Figure 5 in Geiger et al. (2006), which depicts the mean gonadal-somatic indices of bay scallops each month from the Homosassa area of Florida's Gulf coast. The ability to spawn only once was enforced using ω_{a}, which describes the proportion of individuals alive in a cohort at age a that are available to spawn (have not yet spawned). This vector was derived according to

$$
\omega_{a} \begin{cases}1 & \text { if } a=1 \\ \omega_{a-1}\left(1-\text { Mat }_{a-1} * \psi_{\text {month }(a-1)}\right) & \text { if } a>1\end{cases}
$$

where now month $(a-1)$ references the specific month associated with age $a-1$ in a cohort (e.g., age 1 and age 13 both reference January). For example, all individuals of age 1 are available to spawn in January, since none spawned in the previous month. In February, the percentage of individuals age 2 that are available to spawn is equal to the percentage of age 1 s that were available to spawn in the previous month multiplied by the percentage of age 1 individuals that did not spawn in the previous month $\left(1-M a t_{a-1} * \psi_{\text {month }(a-1)}\right)$. This assumes randomness with respect to which scallops (spawned or not) died over the course of the year. We chose to assume bay scallops were only able to spawn once in our model as the majority of the population in

Florida is assumed to (Barber and Blake, 1983), and the likelihood of surviving to a second spawn is low (Estabrooks, 2007; Abele et al., 2009). The parameters α and β of the stock recruit function were converted from the compensation ratio, $C R$ (the relative improvement in juvenile survival rate as the spawning stock biomass approaches zero, Goodyear, 1980), and the spawning biomass produced per recruit in the unfished condition, $\phi_{0}(\mathrm{~T} 2.7-2.9)$. We assumed fecundity-atage was proportional to weight-at-age with an arbitrary scalar of 0.1 .

2.3 Fishery

Fishing mortality per month is calculated as:
(4) $F_{a, t}=s_{a} q E_{t}$
where s_{a} denotes the fishery selectivity of scallops at age, q the catchability of scallops in the fishery, and E_{t} the effort expended in each month, measured as the number of scallopers. The fishery selectivity of scallops was modeled as a simple two-parameter logistic function of the length (i.e., shell height) of scallops at age (T2.6). Since empirical size-based selectivity information is lacking and there is no minimum size limit, the length at 50% vulnerability was set at 35 mm (pers comm, J. Granneman) -- roughly 60% of the average maximum size, and the slope of the logistic function was assumed 0.5.

2.4 Model Calibration/Initialization

2.4.1 Effort

Harvest and effort data are largely unavailable for the Florida bay scallop fishery, and thus there are no existing stock assessment models for the fishery. To initialize our population model, we used effort estimates from Granneman et al. (2021), who estimated vessel effort at different dates throughout the course of the 2018 scallop season in the Steinhatchee area of northwest Florida (Region C, Figure 1). This data was used to estimate the total vessel effort in a
given month. To aggregate the daily effort counts into monthly total effort, we first fit a model to the observed vessel effort as a function of the days since the first sampled effort count for that month and with a random effect for the weekday of the observation (Figure S1) to account for both the general decline of effort throughout the season and the weekday/weekend pattern. We then predicted the effort for 90 days since the start of the scalloping season to approximate the three-month season Granneman et al. (2021) observed and accounted for every possible day of the week. This allowed us to calculate the total expected effort for each month in a hypothetical three-month season regardless of the weekday/weekend pattern. Vessel effort was then multiplied by the average persons per vessel (3.8; Granneman et al., 2021) to get the total number of scallopers. The baseline catchability was also obtained from Granneman et al. (2021) and divided by 3.8 to scale to average persons per vessel.

2.4.2 R_{0}

With seasonal effort and baseline catchability estimates, we then estimated the starting number of recruits in the population $\left(R_{0}\right)$ by minimizing the difference between model-estimated average gallons (1 US liquid gallon is equivalent to 3.785 liters) of scallops caught per person at equilibrium and the estimate from Granneman et al. (2021) (0.81 gallons of scallops per person). To ensure our model was in equilibrium, we ran the model for 25 years and estimated (tuned) R_{0} based on the last year's average gallons of scallops per person. For comparison purposes, we also generated model results for an unfished scenario assuming $E_{t}=0$.

2.5 Scallop bag limit calculations

The bag limit was factored into the calculation of fishing mortality by changing the catchability of scallops by individual fishers. First, we calculated the catch rate of scallops in a
given month if there were no bag limit. We call this the catch-per-unit-effort (CPUE) and calculated it by dividing the unregulated catch (not accounting for bag) by effort using:

$$
\text { (5) } I_{t}=\frac{\sum_{a} \frac{F_{a, t}}{F_{a, t}+M_{a}} N_{a, t}\left(1-e^{-\left(F_{a, t}+M_{a}\right)}\right) * \% \operatorname{Gal}_{a}}{E_{t}}
$$

Given the bag limits are specified in gallons, the numerator describing the catch at age (using the Baranov catch equation; Baranov, 1918) was converted to gallons using:

$$
\text { (6) } \% \text { Gal }=\left[\frac{\left(-6.704 * L_{a}+480.96\right)}{2}\right]^{-1}
$$

Where L_{a} is the length at age defined by the von Bertalanffy growth curve (T2.1). This equation describes the proportion of a gallon occupied by a scallop at a given age. This formula was obtained from Granneman et al. (2021) and Geiger et al. (2006). We assumed catch rates followed a truncated normal distribution with a coefficient of variation of 0.455 calculated from distributions of catch rates obtained in Granneman et al. (2021). We then obtained the probabilities of catching any number of scallops under this distribution from $0-N$, where N is set at some sufficiently large number (where probability of catching N scallops approaches 0 and the sum of the probabilities of catching $0-N$ scallops is approximately 1). The expected catch rate under the bag limit $\left(\tilde{I}_{t}\right)$ was then calculated by multiplying the probability of attaining each catch rate by the number of scallops that would be retained under that catch rate (for $N>b a g$, number retained is equal to bag), and summing the values. We then searched for an adjusted catchability value using Newton-Raphson iterations (Brent, 1973) that would produce a catch rate equal to that expected under the bag limit. Note that this adjusted catchability can be thought of as a realized catchability or harvestability, which represents the proportion of the population harvested per unit of effort (as opposed to the catch or search efficiency for scallops). We do not
model any discard mortality as this is thought to be negligible in bay scallops (Benoît et al., 2015).

2.6 Alternative harvest regulations assessed

In total, we explored ten harvest scenarios. The primary harvest regulations we evaluated include the duration of the scalloping season (longer vs shorter), the timing of the season (earlier vs later), and the size and nature of the bag limit (more vs less, and rolling vs fixed). A full suite of management regulations that were tested is included in Table 3. In the simulation model, changing the season dates changes the months which experience E_{t} and thus F_{t}. For our baseline scenario, we approximated the management regulations currently in place in Citrus, Hernando, and Levy Counties (Region D, Figure 1), as well as regulations similar to those used in surrounding counties (Figure 1) and some novel regulations (Table 3). The size of the bag limits refers to the quantity of scallops (in gallons) legally allowed per scalloper on each day, and the nature of the bag limit refers to whether this amount was constant over the course of the scalloping season (the same each month) or "rolling". We defined a "rolling" bag limit as one in which the bag limit for the initial months of the season was lower than the limit in the final months. We varied bag limits of scallops from 1, 2, and 3 gallons per scalloper per day within the constant bag limit (with two gallons being the "baseline" regulation applied in most areas) and explored rolling limits allowing for 1 gallon in the first month of the season to 2 gallons in the final two months. We also explored the effects of lengthening the season by one month and shifting the season earlier or later in the year. If an additional month was to be added to the harvest season, we kept total effort for the year equivalent and reallocated it across the months following the exponential decay function in subsection 2.4.1.

2.7 Uncertainty in starting conditions and effort trajectory

For Florida bay scallops, and likely for other annual species fisheries that are rarely subjected to stock assessments, there is substantial uncertainty regarding the current exploitation status as well as the trajectory of effort in the past and future. To explore the sensitivity to the population starting condition, we adjusted the catchability value to generate three levels of initial exploitation. Low, moderate, and high levels of initial exploitation were defined for which the initial spawning escapement equaled $50 \%, 35 \%$, and 20% of that in the unfished simulation after the 25 -year initialization period, respectively. These levels were chosen to encompass a range below which different fisheries may be considered overexploited (Caddy and Mahon, 1995; Clark 1991; Goodyear, 1993). Initial spawning escapement was defined as the spawning biomass in the last year of the initialization period for a given simulation divided by the spawning biomass produced over a year in the unfished simulation. For reference, the initial spawning escapement in our model which resulted from using the catchability value from Granneman et al. (2021) was 63%, and the region evaluated in Granneman et al. (2021) generally produces the greatest densities of scallops (https://myfwc.com/research/saltwater/mollusc/bayscallops/season/). The new catchability values for each population starting condition were then used in the process model to project the population forward under the different management regulations.

An additional but related uncertainty in the Florida bay scallop fishery is how future fishing effort will change-either in response to alternative management actions or independent of them. While not well-monitored, some evidence suggests substantial increases over the last decade (Granneman et al., 2021). To assess the sensitivity of harvest regulation performance to future effort dynamics, we created two levels of future effort: 1) effort remained at its current level for the whole simulation and 2) effort linearly increased after the initialization period such
that it doubled by the end of the time series relative to the starting conditions. Together, these two treatment axes of initial exploitation conditions (three levels) and future effort (two levels) resulted in six treatments that each harvest scenario was assessed on. Note however that these scenarios do allow for effort to respond differently to the different regulations evaluated, implications of which are described in the Discussion.

2.8 Performance metrics

Each management regulation scenario and uncertainty treatment were simulated for an additional 25 years beyond the 25 -year initialization period. To compare the regulation scenarios across the uncertainty treatments, we compared two metrics at the end of the 50-year time series:

1) spawning output, and 2) harvest per unit of effort (HPUE). For the calculation of spawning output, we took the mean of the total spawning biomass from the last five years of the simulation (years 46-50) and divided by the spawning biomass produced over one year in the unfished simulation (i.e., spawning biomass unfished). Thus, low values at the end of the simulation period represent low spawning output from the population, and vice versa. For HPUE, we calculated the mean harvest per unit effort of the last five years of the simulation using the expected catch rate under the bag limit. We specifically used harvest per unit effort as opposed to CPUE because there is no indication of socioeconomic value of catch and release in this fishery, and because HPUE explicitly accounts for the imposition of bag limits, which was a key harvest regulation we sought to examine.

2.9 Sensitivity analysis and additional management regulations

We focus mainly on results of ten main management regulations tested within the main text (Table 3). However, we tested an additional 24 regulations, closer to a full factorial of all our regulation treatments, and these are presented in the supplemental file. In addition, we also
examined the sensitivity of our results to the specification of the reference natural mortality rate $\left(M_{r}\right)$ and steepness (h) by increasing and decreasing them by 25% and rerunning the model and management regulations (resulting in an additional 4x24 runs; Figures S2-7). We used steepness instead of compensation ratio as increasing and decreasing steepness by 25% exhibits a greater difference in the stock-recruit relationship than would altering CR by 25%. The base value of CR $=8$ converts to $h=0.66(h=C R /(C R+4))$, and the sensitivity values of $h=0.5$ and $h=0.83$ correspond to $\mathrm{CR}=4$ and $\mathrm{CR}=20$. We also present results for the metric CPUE in Figures S6-7.

3. Results

We evaluated the two performance metrics separately for all combinations of harvest regulations, effort assumptions, and initial exploitation assumptions. The effects of these treatments on spawning output are depicted in Figure 3, and the effects on HPUE are shown in Figure 4.

3.1 Effects of harvest regulations on biological performance

The differences in spawning output between scenarios were larger when initial exploitation was high (i.e., 20% of the initial unfished escapement rather that 50%) as well as under assumptions of greater effort (row 2 [panels d, e, f], Figure 3). The effects of the scenarios can be divided into three main groups. The first group contains the harvest scenario 2 : increased bag limit, scenario 3: decreased bag limit, scenario 4: extending the harvest season later, and scenario 8: a rolling bag limit applied to the current season. This group had little effect relative to the base scenario (status quo), with decreased bag limit generating more spawning output. The second group includes the three scenarios involving an earlier season, scenario 5: extending the harvest season earlier, scenario 7: earlier season, and scenario 10: a rolling bag with an earlier
season. This group resulted in a lower spawning output relative to the baseline. The third group includes scenario 6: a later season and scenario 9: a rolling bag with a later season that resulted in higher spawning output relative to the base scenario. Of these, the rolling bag with the later season (scenario 9) resulted in the most spawning output. However, under the assumptions of baseline effort and low initial exploitation (50% of the initial unfished escapement), no harvest regulations resulted in substantial differences in spawning output, i.e., spawning output was always greater than 40% of the unfished level.

As the levels of initial exploitation increased to moderate and high ($35 \%, 20 \%$ of the initial unfished escapement, respectively), the differences between the different harvest regulations increased. The second group (scenarios 5, 7, and 10) noticeably resulted in much lower spawning output at the end of the time series ($<10 \%$ unfished) under the high initial exploitation. In contrast, the third group (scenarios 6 and 9) still allowed for near or greater than 50% spawning output at the end of the time series. However, at this high initial exploitation level (20% of the initial unfished escapement), the later season approach was the most robust, which performed essentially as well as the decreased bag limit scenario, and was improved when coupled with a rolling bag limit (Figure 3, panel c).

The patterns of our results described above were mirrored for the treatment of increased effort, which effectively decreased the spawning output (e.g., the effective spawning output for the baseline management regulations for panel d in Figure 3 is about 30%, due to the doubling of effort that is only slightly muted by bag limits). The second group (three harvest regulations involving earlier seasons) showed even less spawning output as expected, and the third group (two scenarios involving a later season) showed little difference from the base regulations. Applying the assumption of increased future effort caused three key differences in results: (i) the
"rolling bag, later season" (scenario 9) performed better than all other scenarios when under high exploitation (20\% of the initial unfished escapement); (ii) under this same assumption, decreased bag limit (scenario 3) was no longer providing any real improvement relative to the baseline scenario; and finally (iii) the later season (without a rolling bag) actually outperformed the other rolling bags measures that did not feature a later season (scenarios 8 and 10). Thus, when the doubling in effort effectively reduced the spawning output values further, the later harvest season became increasingly better than other measures.

3.2 Effects of harvest regulations on harvest per unit of effort

Similar to spawning output at the end of the time series, HPUE was nearly equivalent across different management strategies until initial exploitation increased (Figure 4). Under assumptions for baseline effort and initial low or moderate exploitation (50\% or 35% of the initial unfished escapement; Figure 4, panels a and b), most strategies resulted in similar HPUE, owing to the imposition of bag limits (as CPUE did change, Figures S6-7). However, when the initial exploitation was high (20% of the initial unfished escapement; Figure 4, panel c), four regulations stood out as providing greater HPUE: a decreased bag limit (scenario 3), a later season (scenario 6), and the two scenarios with rolling bag limits (scenarios 8 and 9). Thus, when the population is more exploited, decreasing the bag or life history-matched regulations (later season or rolling bag) maintain higher harvest rates than other regulations. The pattern was similar under the assumption of doubled effort (Figure 4, panels d, e, f).

3.3 Sensitivity

Altering the reference natural mortality rate or steepness by 25% up or down did not alter which management regulations performed optimally (Figures S2-7). Of the additional 24 management regulations tested, scenarios 13 and 23-24 performed optimally with respect to both
spawning output at the end of the time series and HPUE. These refer to management regulations which delay the season one month and reduce the bag limit to 1 gallon (scenario 13) or delay the season one month and have rolling bag limits of $1,1,2$ (scenario 23), and 1,2 , and 2 gallons for months in the season (scenario 24) respectively. These scenarios represent a fine-tuning of the best performing regulations out of the initial 10 scenarios.

3.4 Summary of Results

The results reveal three main findings. First, if a scallop population is known to be relatively less exploited (i.e., greater spawning output, lesser effort, or both), then nearly any of the harvest regulations assessed here perform similarly well. The converse of this constitutes the second point: in cases where the scallop population status is either known to be more exploited, or is largely unknown, harvest regulations like later seasons and rolling bag limits that are more aligned with the biology and, specifically, the spawning times of this short-lived, annual species will result in better biological and fishery performance (as measured by spawning output and HPUE). Finally, the third finding is that there are some harvest regulations which are likely to perform poorly under greater exploitation (whether from lower spawning output, greater effort, or both). Specifically, any regulations that move the season earlier, and thus results in more scallops being harvested prior to their spawning, risks both the lowest egg production and HPUE returns.

4. Discussion

Fisheries for short-lived, annual taxa are likely to be particularly sensitive to harvest timing relative to spawning. In the case of the Florida bay scallop, biologically-designed regulations (e.g., later season or rolling bag) ensured some scallops spawn prior to harvest and
performed well across all initial exploitation levels and effort treatments in both the ecological and socioeconomic metrics. Under greater initial exploitation and effort, these regulations outperformed others, where they performed no worse than the others under lower initial population exploitation and effort scenarios. Moreover, these regulations were much more robust in our worst-case scenarios (explored as sensitivities), those being when natural mortality was higher or steepness lower, coupled with higher initial exploitation and when effort increasing over the time series (Figures S2-S7). This is generally consistent with the long history of fisheries regulations attempting to protect some spawning individuals (Lackey, 2005), and we have shown that for short-lived, annual species like the Florida bay scallop, doing so may be achieved through specific timing of the harvest season.

The efficacy of delayed and rolling bag limits in the Florida Bay scallop fishery is supported by findings of better-studied annual and/or semelparous species, as well as the few studies focusing on bay scallops. While not exclusively annual species, the most well-known commercially harvested semelparous species include some of the Pacific salmon and pelagic squid species (Eggers, 1993; Arkhipkin et al., 2015). These populations are often managed under escapement policies that require annual monitoring (Rodhouse, 2001), which is more precise but conceptually similar to the harvest strategies we found performed well for the Florida bay scallop fishery. Whereas escapement-based management typically relies on monitoring to determine when the targeted amount of reproduction has occurred, our model identified regulations that delayed much of the harvest until after spawning. Studies evaluating the harvest of bay scallop populations are more sparse. One of the most comparable studies is bioeconomic investigation of the North Carolina commercial bay scallop fishery (Kellogg et al., 1988). Although it did not include a detailed population dynamics model and focused on commercial rather than
recreational objectives, it similarly concluded that delaying harvest seasons would optimize profits. Additionally, Granneman et al. (2021) estimated bay scallop pre- and post-season population size, harvest, and effort for 2018 in the Steinhatchee area of the Florida Gulf Coast, although they also did not include a population dynamics model with stock and recruitment. They evaluated various management strategies with respect to season lengths and effort levels and found similar results to this study where under the current management regulations, a doubling of effort would likely extirpate the population. In addition, they estimated that rolling bag limits would also lead to increased post-season bay scallop populations.

The main management implication of this work is that biologically designed harvest regulations provide better outcomes, especially under uncertainty (e.g., actual population size and effort levels). The results emphasize that there are essentially two management strategies for sustaining the egg production of scallops. The first is to maintain a fishery at relatively low levels of exploitation. Though requiring substantial, more costly annual monitoring to assess, this would allow for the imposition of a broad range of harvest regulations. The second approach would be to employ biologically designed harvest regulations that specifically delay some harvest until more scallops have likely spawned. The outcomes in the biological and socioeconomic metrics show that a biologically-designed approach performs well under nearly all exploitation scenarios. This implies that biologically-designed harvest approaches will likely be effective even in absence of a substantial monitoring program by ensuring a sufficient proportion survive to spawn. If the actual exploitation is low but also unknown, these harvest regulations will at worst perform barely below other approaches, whereas if the exploitation is higher, they will perform substantially better. However, this harvest approach notably does not reduce effort capacity, leaving the fishery vulnerable to increases in total effort (Mullon et al.,
2005). Thus, the primary finding of our work aligns with Young et al. (2006); there is little reason to not apply biologically designed regulations to short-lived and annual fisheries. However, what these biologically designed regulations should be may differ across species and fisheries. For many annual species, it is likely a delayed harvest season and rolling bag limit will work well, but the specific harvest strategy and timing should be investigated on a case-by-case basis.

The approach we used provides a blueprint for evaluating management regulations for other short-lived, annual recreational fisheries where catch and effort data are sparse. Recreational fisheries for these types of species are common and popular (e.g., Lellis-Dibble et al., 2008; Taylor 2017; Aguilera, 2018; Ben-Hasan, 2018; Sydeman et al., 2020), but harvest regulations are not often evaluated (Forbes et al., 2019). Quantitative evaluation of these fisheries can be complicated by at least two factors, and we demonstrate how both may be addressed. The first challenge is that annual species life histories are not generally wellrepresented by modern fisheries population dynamics modeling (Martell et al., 2008), in which spawning is generally iteroparous and occurs once per modeled time step. Complete or partial semelparity and corresponding periodic recruitment can be achieved by using monthly time steps (as opposed to annual) with simple timing skips (spawning ever nth time step) and incorporating this into recruitment calculations (T2.3 and T2.9). The second complication is that recreational fisheries for these types of short-lived species will often involve bag limits (Hartill et al., 2005; Reid and Montgomery, 2005; Obregón, 2020). Bag limits are easy to implement in individualbased models (IBMs) but challenging in the population and fishery-level models that are most commonly employed (Martell et al., 2008). Our approach provides a more mechanistic
description of how changing bag limits will translate to altered total harvest, which builds off what has been used in earlier recreational fisheries evaluations (Forbes et al., 2019).

Application of our approach should consider several assumptions that could not be verified, and which could affect outcomes. An important one is the implicit assumption that the HPUE metric is sufficient to represent socioeconomic objectives of the fishery. This assumption would be inappropriate for many, if not most, longer-lived finfish recreational fisheries, where the size and rate of catch and harvest are critical components of utility (Hunt et al., 2019), but is probably more appropriate for Florida bay scallops that are gathered (not angled) at a more uniform size compared to most finfish (Granneman et al., 2021). Furthermore, the recommendations we made are conservative with respect to any (unknown) preference for size in that the average size of harvested scallops is likely to increase under the biologically-designed regulations we have recommended. If this modeling approach is applied to other fisheries with perhaps more diverse motivations or types of fishers, multi-attribute utility per trip metrics (Camp et al., 2019; van Poorten and Camp, 2019) or some measure of satisfaction (Birdsong et al., 2021) should be considered. Those approaches should also be applied to future bay scallop work if emerging evidence suggests non-harvest utility or satisfaction is affected by harvest regulations (e.g., regulations increasing congestion or leading to harvest seasons overlapping with less enjoyable weather).

Two other important considerations not assessed in this study include scallops metapopulation structure and the political economy of local scallop management. This work considered a single population that supplies its own spawning biomass and thus recruits because this simple approach increases the clarity of the results and matches the current regional scallop management approach. However, there is some evidence that more complex metapopulation
dynamics exist, with local populations being subsidized by larvae from other populations (Arnold et al., 1998; Bert et al., 2014). If in the future such metapopulation structure can be understood well enough to assess the probabilities of larvae spawned in one region settling in another, spatial population modeling should be used to assess population sources and sinks.

Regardless of metapopulation structure, future studies should assess how harvest regulations implemented differently across the region could directly or indirectly affect effort and the potential landscape consequences of this. By testing scenarios in which overall effort increased in the future, we account for long-term changes in effort independent of regulations, but not for effort dynamics driven directly by regulations or indirectly by regulatory-induced population changes. Empirical (Johnson and Carpenter, 1994; Beard et al., 2003; Post and Parkinson, 2012) and theoretical (Hunt et al., 2011; Allen et al., 2013) studies suggest that altered harvest restrictions can affect fishing effort in some fisheries, though the direction of the effect is not always intuitive (Hurley and Jackson, 2002). Thus, it is possible that the alternative regulations we explore could differently affect scallop fishing effort, which could instigate effort-population feedbacks and alter our results. Future work studying this should assess, such as by stated preference choice experiment, the part-worth utility functions influencing scalloper decision-making. Borrowing those estimated for fin-fisheries (reviewed in Hunt et al., 2019) may be inappropriate because of differences between often challenge-motivated fin-fisheries and scallop fisheries that are more gathering. Such models could consider not only consumer demand for scallops but also the political economy governing regional management decisions. Here, we have implicitly assumed a shift in the harvest season is sufficiently palatable to decision-makers. In reality, shifting towards a later harvest season, including one that occurs after the current summer season closes, may reduce the demand for scallop fishing and alter the economic
contribution of the fishery. Recreational scalloping is a family-oriented activity, with peak participation in the summertime holidays and on the weekends (Granneman et al., 2021). As the season progresses, there are fewer scallop trips, which may be attributable to the start of the school year, hunting season, and hurricane season. Evaluating the socioeconomic effects of a later-shifted season would require assessing the economic contribution to local economies and how fishers are likely to behave under the new regulations. The absence of information about scalloper behavior precluded a dynamic effort component of this model but revealed or stated preference choice studies could address both these issues. Estimating a mechanistic and predictive model of scallop effort would facilitate developing landscape models for testing how population and regulatory changes in one region could affect others, per van Poorten and Camp (2019). This is critical to avoid triggering cascading or unintended consequences for the regional scallop population and fishery.

5. Conclusions

This work demonstrates that biologically-designed harvest regulations that consider the overlap between harvest and spawning seasons are likely to provide ecological and socioeconomic advantages over approaches currently employed for the bay scallop fishery in Florida. Regulations such as later harvest seasons and rolling bag limits likely buffer against uncertainty in the depletion level of the population. While many short-lived, annual species exhibit harvest seasons presumably designed with respect to their spawning, this is one of the first studies to quantitatively evaluate it. It provides a modeling framework that may be more broadly applicable to other taxa. This template might be expanded via future research to allow
for more mechanistic descriptions of fisher utility, decision making, and implications for local economic contribution.

CRediT authorship contribution statement

Lisa Chong: Methodology, Formal analysis, Writing - Investigation, Visualization, Review \& editing. Nicholas Fisch: Methodology, Formal analysis, Writing - Original draft, Investigation, Review \& editing. John Scott Borsum: Writing - Original draft, Review \& editing. Jennifer Granneman: Writing - Review \& editing. Diana Perry: Writing - Original draft, Review \& editing. Gabrielle Love: Writing - Review \& editing. Brittany Hall-Scharf: Writing - Review \& editing. Robert Botta: Writing - Review \& editing. Kai Lorenzen: Writing - Review \& editing. Edward Camp: Supervision, Conceptualization, Methodology, Writing - Original draft, Investigation, Review \& editing. Zachary Siders: Supervision, Methodology, WritingInvestigation, Visualization, Review \& editing.

Declaration of Competing Interest

The authors report no declarations of interest.

Acknowledgements

We thank Dr. Stephen Geiger, Dr. Cassidy Peterson, Dr. Michael Wilberg, and the anonymous reviewers for their constructive reviews and comments that significantly improved this manuscript.

6. Supplementary information

Table S1. Management regulations tested. When bag limit is presented in parentheses, it refers to the bag limit for each open month of the fishing season.

Figure S1. Results of generalized linear mixed model fit to the logarithm-transformed effort as a function of day with a random effect for weekday. The observed data from Granneman et al. (2021) is shown in black circles and the model-based predictions are shown in the red line.

Figure S2. Results of spawning output relative to unfished for the different management regulations simulated in this study under different starting levels of population exploitation (columns, only low and high depicted here) and different assumptions about the level of effort expended between years (rows). The first row depicts a scenario with constant effort in each year of the simulation, where the second row depicts a scenario with effort doubling over the course of the 25 -year simulation period. The horizontal lines depict the sensitivity analysis for natural mortality $(M=0.25)$, where the red lines represent 25% decrease in natural mortality $(M=0.19)$ and the orange lines represent 25% increase in natural mortality $(M=0.32)$.

Figure S3. Results of spawning output relative to unfished for the different management regulations simulated in this study under different starting levels of population exploitation (columns, only low and high depicted here) and different assumptions about the level of effort expended between years (rows). The first row depicts a scenario with constant effort in each year of the simulation, where the second row depicts a scenario with effort doubling over the course of the 25-year simulation period. The horizontal lines depict the sensitivity analysis for steepness $(\mathrm{h}=0.67 ; \mathrm{CR}=8)$, where the red lines represent 25% decrease in steepness (50% decrease in
compensation ratio; $\mathrm{h}=0.5$ and $\mathrm{CR}=4$) and the orange lines represent 25% increase in steepness (150% increase in compensation ratio; $\mathrm{h}=0.83$ and $\mathrm{CR}=20$).

Figure S4. Results of harvest per unit of effort for the different management regulations simulated in this study under different starting levels of population exploitation (columns, only low and high depicted here) and different assumptions about the level of effort expended between years (rows). The first row depicts a scenario with constant effort in each year of the simulation, where the second row depicts a scenario with effort doubling over the course of the 25-year simulation period. The horizontal lines depict the sensitivity analysis for natural mortality $(M=0.25)$, where the red lines represent 25% decrease in natural mortality $(M=0.19)$ and the orange lines represent 25% increase in natural mortality $(M=0.32)$.

Figure S5. Results of harvest per unit of effort for the different management regulations simulated in this study under different starting levels of population exploitation (columns, only low and high depicted here) and different assumptions about the level of effort expended between years (rows). The first row depicts a scenario with constant effort in each year of the simulation, where the second row depicts a scenario with effort doubling over the course of the 25-year simulation period. The horizontal lines depict the sensitivity analysis for steepness ($\mathrm{h}=$ $0.67 ; \mathrm{CR}=8$), where the red lines represent 25% decrease in steepness (50% decrease in compensation ratio; $\mathrm{h}=0.5$ and $\mathrm{CR}=4$) and the orange lines represent 25% increase in steepness (150% increase in compensation ratio; $\mathrm{h}=0.83$ and $\mathrm{CR}=20$).

Figure S6. Results of catch per unit of effort for the different management regulations simulated in this study under different starting levels of population exploitation (columns, only low and high depicted here) and different assumptions about the level of effort expended between years (rows). Catch per unit effort includes both scallops harvested and scallops caught and released in
order to comply with the bag limit. The first row depicts a scenario with constant effort in each year of the simulation, where the second row depicts a scenario with effort doubling over the course of the 25-year simulation period. The horizontal lines depict the sensitivity analysis for natural mortality $(M=0.25)$, where the red lines represent 25% decrease in natural mortality $(M$ $=0.19)$ and the orange lines represent 25% increase in natural mortality $(M=0.32)$.

Figure S7. Results of catch per unit of effort for the different management regulations simulated in this study under different starting levels of population exploitation (columns, only low and high depicted here) and different assumptions about the level of effort expended between years (rows). Catch per unit effort includes both scallops harvested and scallops caught and released in order to comply with the bag limit. The first row depicts a scenario with constant effort in each year of the simulation, where the second row depicts a scenario with effort doubling over the course of the 25-year simulation period. The horizontal lines depict the sensitivity analysis for steepness $(\mathrm{h}=0.67 ; \mathrm{CR}=8)$, where the red lines represent 25% decrease in steepness $(50 \%$ decrease in compensation ratio; $\mathrm{h}=0.5$ and $\mathrm{CR}=4$) and the orange lines represent 25% increase in steepness $(150 \%$ increase in compensation ratio; $h=0.83$ and $C R=20)$.

7. References

Abele, D., Brey, T., Philipp, E., 2009. Bivalve models of aging and the determination of molluscan lifespans. Exp. Gerontol. 44, 307-315.

Aguilera, S., 2018. Measuring squid fishery governance efficacy: A social-ecological system analysis. Int. J. Commons. 12.

Allen, M.S., Ahrens, R.N.M., Hansen, M.J., Arlinghaus, R., 2013. Dynamic angling effort influences the value of minimum-length limits to prevent recruitment overfishing. Fish. Manag. Ecol. 20, 247-257.

Arnold, W.S., Blake, N.J., Harrison, M.M., Marelli, D.C., Parker, M.L., Peters, S.C., Sweat, D.E., 2005. Restoration of bay scallop (Argopecten irradians (Lamarck)) populations in Florida coastal waters: planting techniques and the growth, mortality and reproductive development of planted scallops. J. Shellfish Res. 24, 883-904.

Arkhipkin, A.I., Rodhouse, P.G., Pierce, G.J., Sauer, W., Sakai, M., Allcock, L., Zeidberg, L.D., 2015. World squid fisheries. Rev. Fish. Sci. Aquac. 23, 92-252.

Arkhipkin, A.I., Hendrickson, L.C., Payá, I., Pierce, G.J., Roa-Ureta, R.H., Robin, J.P. and Winter, A., 2021. Stock assessment and management of cephalopods: advances and challenges for short-lived fishery resources. ICES J. Mar. Sci. 78, 714-730.

Arkhipkin, A.I., Winter, A.G. and Nigmatullin, C.M., 2022. Heavy fishery exploitation does not affect sizes at recruitment and maturity of squid Illex argentinus and Doryteuthis gahi, in the Southwest Atlantic. ICES J. Mar. Sci. 79, 182-192.

Baranov, F.I., 1918. On the question of the biological basis of fisheries. Nauch. Issledov. Iktiol. Inst. Izv. I., Moscow, pp. 81-128.

Barber, B.J., Blake, N.J., 1983. Growth and reproduction of the bay scallop, Argopecten irradians (Lamarck) at its southern distributional limit. J. Exp. Mar. Biol. Ecol. 66, 247256.

Barber, B.J. and Blake, N.J., 1985. Substrate catabolism related to reproduction in the bay scallop Argopecten irradians concentricus, as determined by O / N and RQ physiological indexes. Mar. Biol. 87, 13-18.

Beard Jr, T.D., Cox, S.P., Carpenter, S.R., 2003. Impacts of daily bag limit reductions on angler effort in Wisconsin walleye lakes. N. Am. J. Fish. Manag. 23, 1283-1293.

Ben-Hasan, A., Walters, C., Louton, R., Christensen, V., Sumaila, U.R., Al-Foudari, H., 2018. Fishing-effort response dynamics in fisheries for short-lived invertebrates. Ocean Coast. Manag. 165, 33-38.

Benoît, H.P., Capizzano, C.W., Knotek, R.J., Rudders, D.B., Sulikowski, J.A., Dean, M.J., Mandelman, J.W., 2015. A generalized model for longitudinal short-and long-term mortality data for commercial fishery discards and recreational fishery catch-andreleases. ICES J. Mar. Sci. 72, 1834-1847.

Bert, T.M., Arnold, W.S., McMillen-Jackson, A.L., Wilbur, A.E., Crawford, C., 2011. Natural and anthropogenic forces shape the population genetics and recent evolutionary history of eastern United States bay scallops (Argopecten irradians). J. Shellfish Res. 30, 583-608.

Bert, T.M., Arnold, W.S., Wilbur, A.E., Seyoum, S., McMillen-Jackson, A.L., Stephenson, S.P., Weisberg, R.H. and Yarbro, L.A., 2014. Florida gulf bay scallop (Argopecten irradians concentricus) population genetic structure: Form, variation, and influential factors. J. Shellfish Res. 33, 99-136.

Beverton, R.J.H., Holt, S.J., 1957. On the dynamics of exploited fish populations. U.K. Minist. Agric. Fish. Fish. Invest. Ser. 2, 19.

Birdsong, M., Hunt, L.M., Arlinghaus, R., 2021. Recreational angler satisfaction: What drives it?. Fish. 22, 682-706.

Blake, N.J., 1972. Environmental regulation of neurosecretion and reproductive activity in the bay scallop, Aequipecten irradians (Lamarck). Ph.D. Thesis, University of Rhode Island, Kingston. 161 p.

Brent, R., 1973. Algorithms for Minimization without Derivatives. Englewood Cliffs, NJ: Prentice-Hall.

Bricelj, V.M., Krause, M.K., 1992. Resource allocation and population genetics of the bay scallop, Argopecten irradians: effects of age and allozyme heterozygosity on reproductive output. Mar. Biol. 113, 253-261.

Camp, E.V., Lorenzen, K., Taylor, M.D., 2019. Impacts of habitat repair on a spatially complex fishery. Estuar. Coast. Shelf Sci. 244, 106102.

Eggers, D.M., 1993. Robust harvest policies for Pacific salmon fisheries. In Proceedings of the International Symposium on Management Strategies for Exploited Fish Populations. Alaska Sea Grant Report No. 93-02, pp 85-106.

Estabrooks, S.L., 2007. The possible role of telomeres in the short life span of the bay scallop, Argopecten irradians (Lamarck 1819). J. Shellfish Res. 26, 307-313.

Forbes, J.P., Todd, C.R., Baumgartner, L.J., Watts, R.J., Robinson, W.A., Steffe, A.S., Thiem, J.D., 2019. Simulation of different fishery regulations to prevent population decline in a large freshwater invertebrate, the Murray crayfish (Euastacus armatus). Mar. Freshw. Res. 71, 962-971.

Geiger, S.P., Cobb, J., Arnold, W.S., 2006. Variations in growth and reproduction of bay scallops (Argopecten irradians) (Lamark, 1819) from six subpopulations in the northeastern Gulf of Mexico. J. Shellfish Res. 25, 491-501.

Geiger, S.P., Stephenson, S.P., Arnold, W.S., 2010. Protracted recruitment in the bay scallop Argopecten irradians in a west Florida estuary. J. Shellfish Res. 29, 809-817.

Goodyear, C.P., 1980. Compensation in fish population, in: Hocutt C.H., Stauffer J.R. Jr, (Eds.). Biological monitoring of fish. Lexington Books, DC Heath and Company, pp. 253-280.

Goodyear, C.P., 1993. Spawning stock biomass per recruit in fisheries management: foundation and current use. Canadian Special Publication of Fisheries and Aquatic Sciences, 67-82.

Granneman, J., Baxley, C., Bollinger, M., Heil, A., LaGanke, M., Levine, E., Williams, K., 2021. Evaluating the Impact of Recreational Harvest and Management Strategies for Bay Scallops Argopecten irradians concentricus in a Florida Gulf Coast Management Zone. Mar. Coast. Fish. 13, 413-432.

Hall-Scharf, B., Adams, C.M., Hodges, A.W., Geiger, S., 2018. Assessment of the Economic Impact Associated with the Recreational Scallop Season in Hernando County, Florida, TP-235/SG161, 8/2018. EDIS, 2018.

Hartill, B.W., Cryer, M., Morrison, M.A., 2005. Estimates of biomass, sustainable yield, and harvest: neither necessary nor sufficient for the management of non-commercial urban intertidal shellfish fisheries. Fish. Res. 71, 209-222.

Hoshino, E., Milner-Gulland, E.J., Hillary, R.M., 2012. Bioeconomic adaptive management procedures for short-lived species: A case study of Pacific saury (Cololabis saira) and Japanese common squid (Todarodes pacificus). Fish. Res. 121, 17-30.

Hunt, L.M., Arlinghaus, R., Lester, N., Kushneriuk, R., 2011. The effects of regional angling effort, angler behavior, and harvesting efficiency on landscape patterns of overfishing. Ecol. Appl. 21, 2555-2575.

Hunt, L.M., Camp, E., van Poorten, B., Arlinghaus, R., 2019. Catch and non-catch-related determinants of where anglers fish: a review of three decades of site choice research in recreational fisheries. Rev. Fish. Sci. Aquac. 27, 261-286.

Hurley, K.L., Jackson, J. J., 2002. Evaluation of a $254-\mathrm{mm}$ minimum length limit for crappies in two southeast Nebraska reservoirs. N. Am. J. Fish. Manag. 22, 1369-1375.

Johnson, B.M., Carpenter, S.R., 1994. Functional and numerical responses: a framework for fishangler interactions?. Ecol. Appl. 4, 808-821.

Kellogg, R.L., Easley Jr, J.E., Johnson, T., 1988. Optimal timing of harvest for the North Carolina bay scallop fishery. Am. J. Agric. Econ. 70, 50-62.

Lackey, R.T., 2005. Fisheries: history, science, and management. Water encyclopedia: surface and agricultural water, 121-129.

Lellis-Dibble, K.A., McGlynn, K.E., Bigford, T.E., 2008. Estuarine fish and shellfish species in US commercial and recreational fisheries: economic value as an incentive to protect and restore estuarine habitat. U.S. Dep. Commerce, NOAA Tech. Memo. NMFSF/SPO-90, 94 p.

Leverone, J.R., 1992. Environmental requirements assessment of bay scallop Argopecten irradians concentricus. Mote Marine Laboratory Technical Report, no 253.

Lorenzen, K., 2000. Allometry of natural mortality as a basis for assessing optimal release size in fish-stocking programmes. Can. J. Fish. Aquat. 57, 2374-2381.

Lorenzen, K., 2022. Size- and age-dependent natural mortality in fish populations: Biology, models, implications, and a generalized length-inverse mortality paradigm. Fish. Res. $255,106454$.

MacKenzie Jr, C.L., 2008. The bay scallop, Argopecten irradians, Massachusetts through North Carolina: its biology and the history of its habitats and fisheries. Mar. Fish. Rev. 70, 6-79.

Martell, S.J., Pine, W.E., Walters, C.J., 2008. Parameterizing age-structured models from a fisheries management perspective. Can. J. Fish. Aquat. 65, 1586-1600.

Melnychuk, M.C., Young, E.G., Anderson, L.E., Hilborn, R., 2021. Trading off retained daily catch for longer seasons to maximize angler benefits in recreational fisheries management. ICES J. Mar. Sci. 78, 1650-1662.

Myers, R.A., 2001. Stock and recruitment: generalizations about maximum reproductive rate, density dependence, and variability using meta-analytic approaches. ICES J. Mar. Sci., 58, 937-951.

Mullon, C., Fréon, P., Cury, P., 2005. The dynamics of collapse in world fisheries. Fish. 6, 111120.

Obregón, C., Tweedley, J.R., Loneragan, N.R., Hughes, M., 2020. Different but not opposed: perceptions between fishing sectors on the status and management of a crab fishery. ICES J. Mar. Sci. 77, 2354-2368.

Post, J.R., Parkinson, E.A., 2012. Temporal and spatial patterns of angler effort across lake districts and policy options to sustain recreational fisheries. Can. J. Fish. Aquat. 69, 321329.

R Core Team, 2022. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

Reid, D.D., Montgomery, S.S., 2005. Creel survey based estimation of recreational harvest of penaeid prawns in four southeastern Australian estuaries and comparison with commercial catches. Fish. Res. 74, 169-185.

Robert, M., Faraj, A., McAllister, M.K., Rivot, E., 2010. Bayesian state-space modelling of the De Lury depletion model: strengths and limitations of the method, and application to the Moroccan octopus fishery. ICES J Mar Sci. 67, 1272-1290.

Rodhouse, P.G., 2001. Managing and forecasting squid fisheries in variable environments. Fish. Res. 54, 3-8.

Rosenberg, A.A., Kirkwood, G.P., Crombie, J.A., Beddington, J.R., 1990. The assessment of stocks of annual squid species. Fish. Res. 8, 335-350.

Sastry, A.N., 1963. Reproduction of the bay scallop, Aequipecten irradians Lamarck. Influence of temperature on maturation and spawning. Biol. Bull. 125, 146-153.

Sauer, W.H., Gleadall, I.G., Downey-Breedt, N., Doubleday, Z., Gillespie, G., Haimovici, M., Ibáñez, C.M., Katugin, O.N., Leporati, S., Lipinski, M.R. and Markaida, U., 2021. World octopus fisheries. Rev. Fish. Sci. Aquac. 29, 279-429.

Shumway, S.E., Parsons, G.J.G., (Eds.). 2016. Scallops: biology, ecology, aquaculture, and fisheries. Elsevier, 1214 p.

Sydeman, W.J., Dedman, S., García-Reyes, M., Thompson, S.A., Thayer, J.A., Bakun, A., MacCall, A.D., 2020. Sixty-five years of northern anchovy population studies in the southern California Current: a review and suggestion for sensible management. ICES J. Mar. Sci. 77, 486-499.

Taylor, M.D., 2017. Preliminary evaluation of the costs and benefits of prawn stocking to enhance recreational fisheries in recruitment limited estuaries. Fish. Res. 186, 478-487.
van Poorten, B.T., Camp, E.V., 2019. Addressing challenges common to modern recreational fisheries with a buffet-style landscape management approach. Rev. Fish. Sci. Aquac. 27, 393-416.

Young, J.L., Bornik, Z.B., Marcotte, M.L., Charlie, K.N., Wagner, G.N., Hinch, S.G., Cooke, S.J., 2006. Integrating physiology and life history to improve fisheries management and conservation. Fish. 7, 262-283.

Žák, J., Vrtílek, M., Polačik, M., Blažek, R., Reichard, M., 2021. Short-lived fishes: Annual and multivoltine strategies. Fish Fish. 22, 546-561.

Figure captions

Figure 1. Map of Big Bend region of Florida (red rectangle in inset) depicting the five scalloping zones (A-E). Zone D (depicted in orange) was the area chosen for the baseline management regulations in this study and spans Levy, Citrus, and Hernando counties. The per person bag limit in gallons of whole scallops as well as the dates for the open and close of the scalloping season are provided in the table by zone. Note that zone C has a rolling bag limit that is 50% lower in the first 15 day of the season.

Figure 2. The shell height at age (A), weight at age (B), selectivity at age (C), proportion mature at age (D), and natural mortality at age (E) for bay scallops calculated from the life history parameters assumed in the simulation model.

Figure 3. Results of spawning output relative to unfished for the different management regulations simulated in this study under different starting levels of population exploitation (columns) and different assumptions about the level of effort expended between years (rows). The first row depicts a scenario with constant effort in each year of the simulation, where the second row depicts a scenario with effort doubling over the course of the 25-year simulation period.

Figure 4. Results of harvest per unit of effort for the different management regulations simulated in this study under different starting levels of population exploitation (columns) and different assumptions about the level of effort expended between years (rows). The first row depicts a
scenario with constant effort in each year of the simulation, where the second row depicts a scenario with effort doubling over the course of the 25 -year simulation period.

Figures

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Tables

Table 1. Parameters used in the bay scallop simulation model and their source. We provide more detail on how the source material led to the parameter values in the supplemental.

Description	Parameter	Value	Source
Life History			
Asymptotic length	L_{∞}	60	Barber and Blake (1983); Leverone et al. (1992); Geiger et al. (2006)
Brody growth coefficient	K	1/3	Barber and Blake (1983); Leverone et al. (1992); Geiger et al. (2006)
Theoretical age at size 0	t_{0}	0	Arbitrary
Length-weight a parameter	a	0.0001	Arbitrary
Length-weight b parameter	b	3	Standard cubic
Natural mortality at reference length	M_{r}	0.25	Granneman et al. (2021)
Allometric exponent	c	-1	Arbitrary (default)
Reference length	L_{r}	$L_{\infty} / 2$	Arbitrary (default)
Unfished recruitment	R_{0}	Calibrated	Calibrated to achieve estimated average gallons of scallops per person similar to that found in Granneman et al. (2021)
Compensation ratio	$C R$	8	Arbitrary
Maturity parameter 1 (Age at 50\% maturity)	v	5.5	Blake (1972); Barber and Blake (1983); Shumway and Parsons (2016)
Maturity parameter			Blake (1972); Barber and Blake
2 (Growth rate of logistic function)	\checkmark	2.5	(1983); Shumway and Parsons (2016)
Fecundity-weight scalar	η	0.1	Arbitrary

Gonadal-somatic index	$[0.05,0.05,0.05,0.05$, $0.05,0.05,0.05,0.09$, $G S_{\text {month }} \quad 0.125,0.09,0.07,0.05$	Fig 5. Geiger et al. (2006)
Probability of spawning in a given month	$\psi_{\text {month }}=G S_{\text {month }} / \sum_{\text {month }=\text { Jan }}^{\text {Dec }} G S_{\text {month }}$	$G S_{\text {month }}$
Management Selectivity		
Parameter 1 (length at 50% vulnerable)	κ K 35	Arbitrary
Selectivity		
Parameter 2 (growth rate of logistic function)	$\tau \quad 0.5$	Arbitrary
Catchability*	$q \quad 0.0000319 / 3.8$	Granneman et al. (2021)
Monthly Effort throughout the course of a year	$\begin{array}{ll} E_{\text {month }} & {[0,0,0,0,0,0,11415,6} \\ 929,4255,0,0,0] * 3.8 \end{array}$	Granneman et al. (2021)
Effort between years	$E_{t}=f\left(E_{\text {month }}\right)$Constant or linearly increasing to double the initial annual effort at the end of time series	Arbitrary, used as simulation treatment (see section 2.8 on uncertainty of starting conditions)

*Note that this is the catchability value which was used to estimate R_{0}, three different values were used to project the population according to the population starting condition scenarios.

Table 2. Various equations used in the bay scallop simulation model.

Equation	Description	Equation
T2.1	Shell height at age	$L_{a}=L_{\infty}\left(1-e^{\left(-K\left(a-t_{0}\right)\right)}\right)$
T2.2	Weight at age	$W_{a}=a L_{a}{ }^{b}$
T2.3	Natural mortality	$M_{a}= \begin{cases}M_{r}\left(L_{a} / L_{r}\right)^{c} & \text { for } 0 \leq a \leq 18 \\ \infty & \text { for } a>18\end{cases}$
T2.4	Maturity	$M a t_{a}=1 / 1+e^{-\zeta(a-v)}$
T2.5	Fecundity	$F e c_{a}=\eta W_{a}$
T2.6	Fishery Selectivity	$s_{a}=1 / 1+e^{-\tau\left(L_{a}-\kappa\right)}$
T2.7	Alpha Beverton-Holt	$\alpha=\frac{C R}{\Phi_{0}}$
T2.8	Beta Beverton-Holt	$\beta=\frac{C R-1}{R_{0} * \Phi_{0}}$
T2.9	Unfished eggs per recruit	$\Phi_{0}=\sum_{a} l_{a} * \operatorname{Mat}_{a} * \psi_{a} * \omega_{a} * F e c_{a}$
T2.10	Survivorship at age in unfished condition	$l_{a}= \begin{cases}1 & \text { if } a=1 \\ l_{a-1} e^{-\left(M_{a-1}\right)} & \text { if } a>1\end{cases}$
T2.11	Baranov Catch Equation	$C_{a, t}=\frac{F_{a, t}}{F_{a, t}+M_{a}} N_{a, t}\left(1-e^{-\left(F_{a, t}+M_{a}\right)}\right)$

Table 3. Management regulations tested in this study. When bag limit is presented in parentheses it refers to the bag limit for each open month of the fishing season. We defined a "rolling" bag limit as one in which the bag limit for the initial months of the season was lower than the limit in the final months. A "fixed" bag limit refers to a single bag limit that is set throughout the season per month.

Number	Name	Bag Limit (gallons)	Bag Type	Season Length (months)	Season Start	Season End
1	Base	2	Fixed	3	July	Sept
2	Increased bag	3	Fixed	3	July	Sept
3	Decreased bag	1	Fixed	3	July	Sept
4	Increased season (later)	2	Fixed	4	July	Oct
5	Increased season	2	Fixed	4	June	Sept
6	(earlier)	2	Fixed	3	Aug	Oct
7	Later season	Earlier season	2	Fixed	3	June
8	Rolling bag limit Rolling bag limit and later season	$(1,2,2)$	Rolling	3	July	Sept
10	$(1,2,2)$	Rolling	3	Aug	Oct	
	Rolling bag limit and					
earlier season	$(1,2,2)$	Rolling	3	June	Aug	

[^0]: Examining the performance of alternative harvest regulations for short-lived taxa; a case study of Florida Bay Scallop Management

 Lisa Chong ${ }^{1 * a}$, Nicholas Fisch ${ }^{2 * a}$, John Scott Borsum ${ }^{3}$, Jennifer Granneman ${ }^{4}$, Diana Perry ${ }^{3}$, Gabrielle Love ${ }^{1}$, Brittany Hall-Scharf ${ }^{5}$, Robert Botta ${ }^{3}$, Kai Lorenzen ${ }^{1}$, Edward Camp ${ }^{1}$, Zachary Siders ${ }^{1}$
 ${ }^{1}$ Fisheries and Aquatic Sciences, School of Forest, Fisheries, and Geomatics Sciences, Institute of Food and Agricultural Sciences, University of Florida, USA
 ${ }^{2}$ National Marine Fisheries Service, Southeast Fisheries Science Center, 101 Pivers Island Road, Beaufort, North Carolina 28516, USA
 ${ }^{3}$ School of Natural Resources and Environment, Institute of Food and Agricultural Sciences, University of Florida, USA
 ${ }^{4}$ Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, 100 $8^{\text {th }}$ Avenue Southeast, St. Petersburg, Florida 33701, USA
 ${ }^{5}$ Florida Sea Grant agent, UF/IFAS Extension Hernando County, Gainesville, FL 32611, USA
 *Corresponding authors: email: lisa.chong8594@gmail.com; nicholas.fisch@noaa.gov
 ${ }^{\text {a }}$ Note: both authors contributed equally to this study and share first authorship.

 Present address: 7922 NW 71 Street, Gainesville, Florida, USA, 32653

